
Memory Allocation Page
Diagnostic like Page K

Tue, Jul 20, 2004

The IRM 68K-based systems include a page application, normally assigned to Page K,
that shows what allocated memory blocks are in existence, updated at 15 Hz. But the
vxWorks-based PowerPC system has so far lacked a similar diagnostic. An initial step
has been provided for that system, however, that writes a record into a data stream
when a block is allocated or freed. (See the note, Memory Allocation Diagnostic, Feb 4,
2003, for a description of this interim implementation.) The new plan is to write a page
application that can monitor what is written into the data stream and build a list of
allocated blocks similar to that in the IRM. Because it is based on a data stream, it is
possible to view allocated memory blocks in another node, not merely in the local node.
This note is written to evolve a design for the new Page K.

Preview of plan
Just to get started, assume that we can make a 15 Hz data request for the contents

of the most recent records written into the ALLOCLOG data stream. (If this is in another
node, it will first be necessary to look up the index of the data stream in the DSTRM table,
which can be done via the generic name lookup supported by listype 55.) Process these
records to maintain a data structure that includes all of the currently allocated blocks, at
least those known to be created since the request was started. (If it is desirable to
maintain such a structure that reaches back to the time of reboot, it would be necessary
to implement the same processing logic within a local application that would become
active immediately upon reboot and remain active indefinitely.)

Here is the format of the 16-byte data stream records:

Field Size Meaning
rAddr 4 Base address of allocated block
rSize 2 Block size
rFlag 1 Flags: Ax = allocation, Fx = free, x = flags
rType 1 Memory block type#
rTime 8 Date, time of allocation or free call, in usual BCD format.

How shall the data stream records be processed to build a structure that is maintained
in increasing order of memory block address? Consider the idea of keeping a linked list
of active block references. Imagine an array of records with the following structure:

Field Size Meaning
aFwd 4 Ptr to next record in sequence of block address
aInfo 4 Extra information: LA name, requesting node#
aAddr 4 Base address of allocated block
aSize 2 Block size
aFlag 1 Flags from data stream record
aType 1 Memory block type#

Assume there is a variable called aHead that is a ptr to the head of this linked list, the
record that contains the lowest block address in its aAddr field. In case there are no

allocated blocks known since the initial request was made, aHead will be NULL.

Assume another variable called fHead contains a ptr to a linked list of free records in
the same linked list. Initially, fHead points to the start of the linked list, and every aFwd
field points to the next entry in sequence, with the last record having NULL in that field.

Initially, all records are free, and the free list is of maximum length. Consider that the
constant aRecMax is the total number of records available in the array. As blocks are
allocated and freed over time, the physical order of records in the allocated linked list
and in the free list may change. But one can easily traverse the list in numeric order of
aAddr, since that is the purpose for this structure. The idea here is that the array
provides a place to keep the block addresses that are active, and the records are
logically maintained in sequential order of increasing aAddr.

Processing allocation records
How do we process allocation records found in the data stream? If an allocation

record containing the block address rAddr is found, insert it into the array by calling the
function ARecInsert. What does ARecInsert do? Search through the linked list to find
a record, if any, that has an aAddr field higher than the rAddr to be inserted. If one is
found, logically insert the new record just before that one, removing a free record from
the free list for the purpose. Removal from the free list can be done by taking the record
pointed to by fHead. The aFwd field of that free record is copied into fHead.

If no higher aAddr field is found, compared with the new rAddr, append the new
record at the end. Make the aFwd field of the last record point to the new record
obtained from the free list, and make the aFwd field of the new record point to NULL.

Processing free records
What if we encounter a free block record in the data stream? Find the record with

a matching aAddr, if any, delete it from the linked list, and return it to the free list. Copy
the aFwd field of the matching record to the aFwd field of the previous record. Add the
newly freed entry to the free list at the head by copying fHead to its aFwd field and
setting fHead to point to the newly freed record. The next time we need a free record, it
will be this one, unless additional records are freed before that time.

Efficient methods
What efficiencies can reduce the amount of scanning through the linked list that

is required? By examining the list of new records sampled from the data stream, if we
find an allocation record followed by a freeing record with the same rAddr field, we can
forget about inserting the allocation record into the linked list. This logic can be added
to the processing of each allocation record. Before doing the insert, scan from that point
in the buffer of new records to find a match on the rAddr field. If there is a match, skip
the insert and erase the matching entry, so it will not be interpreted as a freeing record
later. If there is not a match, go ahead and perform the insert as described above.

We can retain a aRecPtr to the latest record in the linked list that was processed. When
scanning to find a place for an insert, or to perform a deletion, first check the rAddr
against the aAddr of the record pointed to by aRecPtr. If rAddr is greater, start the scan

Memory Allocation Page p. 2

after this record; if it is less, start the scan at the beginning (aHead). If it is equal, and the
matching record is to be freed, we already have the matching entry. Set aRecPtr to
point to the last record inserted, or the record just before a newly deleted record.

Foreign node limitations
Since we have within each data stream record the value of the block type, we can

interpret what kind of block it is. But we cannot so easily find out what LA may have
created it. The current version of Page K for the IRM can do so because it only displays
memory blocks in the local node, where the LATBL is conveniently accessible. (We can
also show a block allocated to hold executable code, since the CODES table is also quite
conveniently accessible. But for the vxWorks case, such allocated executable blocks are
handled by vxWorks, so we really don’t know about them and they will not appear in
the data stream records.) We cannot show the requesting node for a given allocated
request block either, since we cannot easily access the contents of the request block. All
of this means that we can do best in the case that the node queried is the local node. We
may therefore want to special case it. If the target node is the local node, we can scan
through LATBL, and we can look inside an allocated request block.

In either case, this new program cannot show the free blocks of memory. The reason is
that vxWorks allocates memory for purposes for which we have no direct concern, so
just because there appears to be a gap between two successive allocated blocks does not
mean that the gap is free memory. Also, we do not know the size of the maximum
contiguous free block under vxWorks, so the display will have to omit that info as well.
If one uses telnet access to enter the memShow command, the number of allocated
blocks might be 1100, typically, far more than are likely to be blocks that we allocated,
perhaps by an order of magnitude.

What diagnostics might we include for this page application? Besides the execution
time each 15 Hz cycle execution, we can keep a count of the number of data stream
records captured each 15 Hz cycle, the current total aRecActive of active blocks in the
linked list, the number of free entries available (= aRecMax – aRecActive), error counts
of the number of illegal block type codes encountered, the number of times a block to be
inserted was already in the linked list, and the number of times the linked list was full.

Additional feature
If it were useful to maintain a simple array of currently allocated blocks, one

could easily be built by traversing the linked list and copying the information into the
array. If this is cheap (in execution time) to do, it may be useful in making it that much
easier to monitor allocated blocks in other nodes.

Since the time-of-day is included in the data stream records, we have the possibility to
show it on the new Page K (PAGEMBLK) display. One would need to figure out how to fit
it in, and also allocated another field in the array elements to house it.

Implementation for IRM
With the design described in this note, it is clear that it does not mix well with

the analog in the IRM. If one used the new Page K to target an IRM, we would not get
any response, because there is no such data stream as ALLOCLOG written to by IRM

Memory Allocation Page p. 3

system code. What would it take to do so?

All allocations and freeings of memory blocks would have to be corraled so that we
could be sure to write a data stream record for each occurrence. The code at the lowest
level is normally AllocP, which itself calls Alloc, a register-based entry point that
actually does the pSOS ALLOC_SEG trap. It allocates from Region I memory, or from
Region 2 memory if that fails. Similarly, the FreeP routine calls Liber, another register-
based call that makes the FREE_SEG trap. As for the applications, most of them are
Pascal programs that either call Alloc, which actually finds its way to AllocP in the
system code via a special trap, or New(), which is implemented directly by code in
LASysLib. It is too bad that the support for New() did not also find its way to AllocP in
the system code, because it would make the job of capturing the application calls much
easier. As it is, we might modify LASysLib to do it the right way, but we would also
have to build new versions of all the applications, and install them, in order to get the
updated library routine. Still, it may be worthwhile as a long term goal.

Suppose we have the data stream being written to by all the relevant parts of the IRM
system code. Then a new Page K that works for the PowerPC should also be able to
target the IRM nodes in the same way. Also, we should be able to write a new version
of Page K for execution on the IRM. But the new one does not work exactly like the old
(present) one, which also shows free spaces, since all allocated memory is understood
by system code. The present one is called PAGEMBLK. If we wish to keep both versions
available for the IRM, we would need a different name for it, such as PAGEMEMB.

Post-implementation
A new PAGEMEMB was written for the PowerPC along the lines described herein.

At first, it failed to work when the target node specified was other than the local node.
This was due to a bug in the generic name search support in the ReqDGenP system
module. But it works ok for targeting the local node. Only allocated blocks are
displayed, since we have no easy way to know about free blocks. This display shows
only blocks that we allocate, not any that VxWorks allocates for its own use. Operating
in test node0590, after quite some time, the list is about 8 blocks long only. Execution
time is typically about 80 microsec, with occasional excursions beyond 1 ms.

A possible improvement, besides fixing the bug, is to show “friendly node numbers”
for the requesting node of a request block. This may involve maintaining a cache of
translated node numbers.

Sometimes this display that is updated at 15 Hz can be hard to follow visually, so a
listing option is added that allows for a snapshot listing of allocated blocks.

Finally, the latest version includes friendly node#s, although they are only included for
the case of monitoring the local node. This is not thought to be a severe restriction, as
one can use Page G to reach any node and run the program there.

The final display format is as follows:

Memory Allocation Page p. 4

K MEMORY BLOCKS 07/13/04 1330
NODE<0590> *L<0509> 6 OFFS= 0
 ADDRESS SIZE TY DESCR RNOD AGE
008E6588 0040 09 AHDRMSG 0
008E65D0 0050 09 AHDRMSG 13
008E6628 0030 01 LOCREQ 39
008E6660 0030 01 LOCREQ 0
008E6698 0018 0E INTPTRS 13
008E66B8 0048 0C ACREQ AB86 13

The target node is followed by a listing node# to which a snapshot of the allocated
blocks can be sent. It is initiated by a keyboard interrupt in the area of the listing node
field. A count of the total #entries in the linked list follows, with the display window
offset at the end of the line. Each line of the display shows the block address, its size, its
type# in hex, some text description for that type#, the requesting (friendly) node# for a
local request block case, and the age of the block in seconds. The age makes it clearer
which blocks relate to each other. For a RETDAT request, for example, 3 blocks might be
needed to support the request, all of them allocated at the same time. The largest age in
the list is likely to be the request block that supports the collection of the data stream
data from which the linked list and display are produced. This also gives a context for
the significance of the other age values.

The meaning of a friendly node# is shown in this example by the value 0xAB86. The
upper 4 bits value of A is meant to denote the Acnet protocol port#. (A value of C
indicates the Classic protocol port#.) The low 12 bits indicate the Acnet trunk# and
node# in hex. The trunk# is 11, and the node# is 134. To support this RETDAT request
that has been active for 13 seconds, 3 blocks were created. One is the main request
block; the second is the internal ptrs block; and the last one is the reply message block.

Summary
This note describes the evolution of a new page application designed to show

allocated memory blocks in a PowerPC-based node, based upon the existence of the
ALLOCLOG data stream in the target node that holds records of each memory block that
is allocated or freed during system operation. As a page application, it only shows
memory blocks that are allocated since the “click” that initiated the activity. An option
is provided to generate a snapshot listing of the blocks while the display is actively
updating at 15 Hz. For the case of monitoring the local node memory block activity, the
requesting node# is displayed for those blocks identified as Classic or Acnet protocol
request blocks. If a local application is started up in the local node, the display indicates
the name of the LA associated with the static memory block it allocates upon start-up.
The age of each block in seconds is displayed to allow easy association of related blocks.
The page application is written to run in both 68K and PowerPC systems. Until support
for the ALLOCLOG data stream is implemented for IRMs, however, only PowerPC nodes
can be targeted for display of allocated memory blocks.

Addendum
Modifying the application to maintain the linked list in order of block age, not

base address, makes it even more obvious which blocks might relate to each other. This
was done in the final version of both MEMB and PAGEMEMB.

Memory Allocation Page p. 5

